

### **Zoogoneticus tequila** reintroduction project: an international cooperative project







BIOLOGÍA



### CONISIÓN NACIONAL PARA EL CONOCIMIENTO Y USO DE LA BIODIVERSIDAD



The Mohamed bin Zayed SPECIES CONSERVATION FUND







# The lab start in 1997









# The Fish Ark project Officially start at 1999

## First work









# 

# 2008





Reelling Vereniging levendbarende tandkarpers



Phase 1 (year one and two). Securing the reintroduction by the biological, ecological and limnologic characterization of the springs of Teuchitlán

-Electrochemical characteristics of the water

- Water and habitat Quality Indexes
- -Geomorphologic variables
- -Aquatic vegetation
- -Plankton community
- -Fish community structure
- -Food chain of the fish community

-Growth and reproduction of the fish species

- Parasitological studies







# **Collection sites**



# Limnobiological characterization



# Water quality along the river using 35 Parameters





| SITE       | Phytoplankton  | Dominant algal group             |
|------------|----------------|----------------------------------|
| <b>S1</b>  | < 200 org/mL   | Diatoms                          |
| <b>S2</b>  | < 200 org/mL   | Diatoms                          |
| <b>S</b> 3 | < 1000 org /mL | Diatoms                          |
|            |                | Green algae                      |
| <b>S4</b>  | < 500 org/mL   | Green algae                      |
|            |                | Diatoms                          |
|            |                | Blue green algae                 |
| <b>S</b> 5 | < 500 org/mL   | Diatoms                          |
|            |                | Green algae                      |
| <b>S6</b>  | < 200 org/mL   | Green algae                      |
|            |                | Diatoms                          |
| <b>S7</b>  | < 200 org/mL   | Green algae                      |
| <b>S8</b>  | < 500 org/mL   | Diatoms                          |
| <b>S9</b>  | > 1000 org/mL  | Green algae, Diatoms, Blue Green |
|            |                | algae, Euglenoids                |



Duyonema metianicum Gomphonema affine

Amphora montana

Diatoms





100 C

Synedra amplicephala

Phacus caudatus

Merismopedia marzonii

**Euglenids and Cyanobacteria** 

Aphanocapsa incerta





# 38 Taxa

#### COPEPODA



#### ROTIFERA







CLADOCERA















OSTRACODA







# MACROINVERTEBRATES 47 TAXA













### General trend of Integrity Biotic Index (IBI).



### excellent

### regular













#### Rosgen 1996



# S1: Spring "El Rincon"



### Abundance of species

90% represented by exotics















### Minimum reproduction size



|                   | ASP    | GAT   | HBI | РМЕ    | XHE    | ZPU    | ZTE   |
|-------------------|--------|-------|-----|--------|--------|--------|-------|
| SEXUAL PROPORTION | 0.25:4 | 1:1.3 | 1:2 | 0.68:1 | 1.38:1 | 0.75:1 | 1:1.8 |
| FECUNDITY         | 5      | 8     | 6   | 20     | 7      | 6      | 4     |





### Density of fish community in the different locations



■ %NATIVES ■ %EXOTICS

The decision was not easy

-Sites 1 to 3 and 8 with the best quality index

-The most invertebrates diverse (potential food) sites are the poorest quality index places

## Were we need to reintroduce?



# **Control of exotic species**

Goal: control of the exotic species of the Teuchitlan river



Pseudoxiphophorus bimaculatus



#### Poecilia sphenops





Xiphophorus hellerii



Xiphophorus maculatus

Oreochromis aureus

### A. Fishing art





Net chinchorro

Tramp, Naza



#### Electroshock

# Catching fish



The extraction was made principal in the site 1 and 2, where we reintroduction the *Z. tequila* and "EI anillo"

# Site "El anillo"



### This was the first control of exotics species

#### **B. Hydraulic gates**



We elaborated hydraulic gates that regulates the flow of water and the entrance of the exotic species to the pools.

We made different events of extraction of exotic species

Number of organisms captured in "El anillo". The number corresponds to 1 hour of capture. In italics the weight.

| Species                       | Nasa          | Chinchorro | Electro | Total     |
|-------------------------------|---------------|------------|---------|-----------|
| Pseudoxiphophorus bimaculatus | 48            | 2          | 15      | 65        |
|                               | 123           | 1.24       | 20.427  | 143.35    |
| Poecilia sphenops             | 19            | 21         | 16      | 56        |
|                               | 39.7          | 23.66      | 10.27   | 43.06     |
| Xiphophorus helleri           | 1             | 0          | 2       | 3         |
|                               | 0.63          | 0          | 0.309   | 0.94      |
| Orechromis aureus             | 18            | 20         | 33      | 71        |
|                               | not available |            |         |           |
| Weight /grs                   | 163.3         |            | 22.522  | 398.82 g. |
| Average/1 hr                  |               |            |         | 195       |

## Collection of organisms in the sites 1 y 2

| Species                       | Sitio 1 | Sitios 2 | Total     |
|-------------------------------|---------|----------|-----------|
| Pseudoxiphophorus bimaculatus | 513     | 665      | 1178      |
|                               | 355.05  | 550.83   | 926.88    |
| Poecilia sphenops             | 40      | 26       | 66        |
|                               | 32.12   | 17.31    | 49.43     |
| Xiphophorus hellerii          | 73      | 85       | 158       |
|                               | 44.51   | 46.46    | 76.72     |
| Orechromis aureus             | 3       | 1        | 4         |
|                               | 3.42    | 1.20     | 4.62      |
| Captured organisms            |         |          | 1406      |
| weight total                  |         |          | 1057.65/g |





### Conclusions

- In the site one and two were the extraction of exotic species, in those sites we made the reintroduction *Z. tequila*.
- It will be very difficult the eradication of the exotic species, but we can have a control of their populations.
- We recommend the extraction have to continue in a long period.
  But with the participation of local people





# PARASITOLOGICAL WORK
#### The work consisted in two main parts:

- Before reintroduction
  - Parasitological survey of *Z. tequila* in Morelia
  - Parasitological survey of fishes from Teuchitlan

• After reintroduction

- Before reintroduction
  - Parasitological survey of *Z. tequila* in Morelia
    - Health screening



Rustic pond at botanical garden in Morelia city

The examination period:

- two taxa of parasites were found
  - Lernaea cyprinacea
  - Spiroxys sp Larva).
- Seasonally the infection has important changes.
  - In the dry season the parasitic prevalence were since 0 20%
  - In the rainy season the prevalence were since 40 – 70%.
- It was decided to collect the fish for reintroduction in the dry months of the year.





- It was necessary to establish a deworming treatment prior to reintroduction.
- An experiment to test the resistance of the species and effectiveness of different drug in the parasites was performed, observing the prophylactic treatment recommended for aquarium fish based on erythromycin, tetracycline and metronidazole.
  - Dose was with a 100% (prophylactic treatment) and replicas made with dilutions to the 75%, the 50% and the 25% plus an untreated replica as control.
- Survival and presence of parasites was evaluated

The dose made with the dilution to the 50% presented an efficiency of 100% survival and deworming effectiveness for both sexes.



- After reintroduction
  - Parasitological survey of fishes from Teuchitlan
    - Health screening of all the fish species in the springs an river
    - Determine sex, weight and measure
    - Parasitological dissections
    - To characterize the infection

- Not more than 30 fish of each species were collected from each site (five sites).
- The fish were dissected according with the specialized literature.
- Results are:

#### Results

We have recovered 12 taxonomic identities, four nematoda, seven platyhelminthes and one acanthocephalan.





| NEMATODA          |  |
|-------------------|--|
| Rhabdochona       |  |
| mexicana          |  |
| Contracaecum sp   |  |
| Eustrongylides sp |  |
| Spiroxys sp       |  |
|                   |  |

PLATYHELMINTHES Diplostomum compactum Posthodiplostomum minimum Clinostomum complanatum Glossocercus auritus Centrocestus formosanus Saccocoelioides lamothei Botriocephaus acheilognathi ACANTOCEPHALA Arhythmorhynchus brevis

Exotic in Mexico

#### Characterization of the infection

| Parasite                                                                                                                           | Stage                                    | Habitat                   | Prevalence                                  | Abundance                                                      | Average<br>intensity  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|---------------------------------------------|----------------------------------------------------------------|-----------------------|--|--|
| NEMATODA                                                                                                                           |                                          |                           |                                             |                                                                |                       |  |  |
| Rhabdochona mexicana                                                                                                               | Adult                                    | si                        | 1.48                                        | 0.03                                                           | 2.27                  |  |  |
| Contracaecum sp                                                                                                                    | Larva 3                                  | m                         | 0.80                                        | 0.07                                                           | 8.47                  |  |  |
| Eustrongylides sp                                                                                                                  | Larva 3                                  | m                         | 2.92                                        | 0.08                                                           | 2.89                  |  |  |
| <i>Spiroxys</i> sp                                                                                                                 | Larva 3                                  | g                         | 0.13                                        |                                                                | 1.63                  |  |  |
| PLATYHELMINTHES                                                                                                                    |                                          |                           |                                             |                                                                |                       |  |  |
| Diplostomum compactum                                                                                                              | Metacercaria                             | me                        | 0.67                                        | 0.01                                                           | 1.93                  |  |  |
| Posthodiplostomum minimum                                                                                                          | Metacercaria                             | I                         | 0.10                                        |                                                                | 1.50                  |  |  |
| Clinostomum complanatum                                                                                                            | Metacercaria                             | m                         | 0.07                                        |                                                                | 0.75                  |  |  |
| Glossocercus auritus                                                                                                               | Metacestode                              | si                        | 0.18                                        | 0.00                                                           | 1.00                  |  |  |
| Centrocestus formosanus                                                                                                            | Metacercaria                             | gi                        | 11.39                                       | 9.66                                                           | 84.84                 |  |  |
| Saccocoelioides lamothei                                                                                                           | Adult                                    | si                        |                                             |                                                                | 0.04                  |  |  |
| Botriocephaus acheilognathi                                                                                                        | Adult                                    | li                        | 0.33                                        | 0.01                                                           | 2.45                  |  |  |
| ACANTOCEPHALA                                                                                                                      |                                          |                           |                                             |                                                                |                       |  |  |
| Arhythmorhynchus brevis<br>Abbreviations: si = small intestine, m                                                                  | Cystacanth<br>= muscle, <b>g</b> = gonad | m<br>s, <b>me</b> = meser | 0.10<br>nteries, <b>l</b> = liver, <b>g</b> | $\mathbf{i} = \mathbf{gills}$ and $\mathbf{li} = \mathbf{lat}$ | 1.00<br>ge intestine. |  |  |
| Note: <b>Prevalence</b> = percentage, <b>Abundance</b> = number of helminths among the fish surveyed population and <b>Average</b> |                                          |                           |                                             |                                                                |                       |  |  |

**intensity** = number of helminths among the parasitized fish population.

Respect to the sites at the field work (in the last year of work)



Graphic about one year of general prevalence among the sites at the springs (site 1) and the river (sites two to five). Note: janII and febII are 2018 and the other ones are 2017.

#### About the hosts (in the last semester of work)



Graphic about one semester (September 2017 – February 2018) of general prevalence among the fish hosts at the spring and Teuchitlan river.

#### Conclusions

- We found/stablished a deworming treatment specifically for *Z. tequila*.
- We were able to take *Z. tequila* without parasites from Morelia to Teuchitlan.
- we determined that population of parasites in the spring and river was not a risk for the reintroduced fish.

#### and

• We determined that the best sites (with the lowest values of parasitic infections) were the sites 1 and 2 (the spring and the beginning/upper part of the river).

#### SUCCESS IN THE REINTRODUCTION OF THE TEQUILA

#### **SPLITFIN (ZOOGONETICUS TEQUILA) IN ITS NATIVE**

#### **ENVIRONMENT**

Mama, I'm coming home

- Ozzy Osbourne -

### Native vs. exotic



VS.



### Laboratory experiments



### Laboratory experiments



### Vegetated vs non-vegetated













••••••• Polinómica (Z. tequila sin vegetación)

······ Polinómica (P. bimaculatus sin vegetación)



### Conclusion

• The heterogeneity (physical) of the sistem does affect the population growth of bot species

#### But

- When bot species cohabit the native presents a decrease in population
- Then...let is put some (500 individuals) in semicontrol conditions in Teuchitlán River in sites (e.g. site 1; manantial) where water quality is better and les abundance of exotic species

### Growth and reproduction in situ



### Survivorship once re-introduced



### Individual growth in semi-controlled conditions







Abril Junio Julio

### Conclusion

• High mortality at re-introduction (as expected)

But

• Once stablised reproduction and new-born individuals *in situ* are present.

Excelent!

Release tequila...!

not that one...yet



### This one...



### Reintroduced on November the 1<sup>st</sup> (2015)



Noche de muertos

When the beloved ones come back...

from extinction

### **Collection sites**



### Catch in situ in the first 8 months



### Mean growth and sexual maturity in situ









# What do you eat *Z. tequila* in the Teuchitlán river?



## Welcome home...

### So what?

- Example of success on recovering *in situ* an extinct species *in situ*
- Recovering native ictilogical diversity
- Big step in recovering ecological process and biodiversity at local scale
- Overall, success from a collaborative work for and by a common goal
- Conserve the world





Conservation of Goodeids and Co-Occurring Fishes in Central Mexico Universidad Michoacana de San Nicolas de Hidalgo



#### "Environmental education strategy to the conservation of *Zoogoneticus tequila* in the Teuchitlan River "

#### **Speaker:**

#### Biol. Federico Hernandez Email: kiauil@gmail.com.





November, 2018

### **Teuchitlan River**



### Introduction



Before and after the re-introduction of *Z. tequila*, we stablished an strategy on environmental education for the local community

### What did we?



#### **Activity 1: Workshops**

In elemental school and High school To propose the importance of the conservation of the Teuchitlan River and their species.

#### Students participate 564





#### **Activity 2: Action Poetry**



The walls of Teuchitlan were painted by students of high school The walls have messages about conservation of the nature







The river has music to whom can listening
Activity 3: Workshop to teachers about sustainability on conservation nature





The topics were: Sensibility, Environmental theory, Educative model and another.



#### Communitarian water quality monitoring



12 people from Teuchitlan

Long term monitoring plan

Environmental education program



#### Activity 4: Exposition museumgraphic in the Centro Interpretativo Guachimontones "Phil Weigand



We made workshops about Zoogy







# Activity 5: Action plan to the conservation of native species with the local community and government authorities



#### Conservemos limpio nuestro río



Ven y conoce las especies de Teuchitlán.



Building capacities1 PhD students5 MSc students11 BSc students







### What next in Teuchitlan "we hope"

- Follow reintroduction of *Z. tequila*
- Continuing with reintroduction of *N. amecae*
- Start the S. francesae reintroduction



### Other conservation project

- Zacapu lake conservation



- Chapalichthys pardalis reintroduction





et la Recherche



Project "Reintroducción de Zoogoneticus tequila al río

Teuchitlán y sus manantiales"



Ent 200

Ictiología y Conservación Laboratorio de Biología acuática UMNSH

CHESTER 👹 🀼 🔂 🔂 صندوق محمد بن زاید **G**WG Goodeid Working Group للمحافظة على الكائنات الحية The Mohamed bin Zayed SPECIES CONSERVATION FUND O. NA association Haus des Meeres abear British pour la Conservation

## Thanks Zoogy colective







