

Zoogoneticus tequila reintroduction project: an international cooperative project

BIOLOGÍA

COMISIÓN NACIONAL PARA EL CONOCIMIENTO Y USO DE LA BIODIVERSIDAD

The Mohamed bin Zayed SPECIES CONSERVATION FUND

Reintroduce Zoogoneticus tequila to Teuchitlan wetland area

Phase 1 (year one and two). Securing the reintroduction by the biological, ecological and limnologic characterization of the springs of Teuchitlán

-Electrochemical characteristics of the water

- Water and habitat Quality Indexes
- -Geomorphologic variables
- -Aquatic vegetation
- -Plankton community
- -Fish community structure
- -Food chain of the fish community

-Growth and reproduction of the fish species

- Parasitological studies

Colection sites

Limnobiological characterization

Water quality along the river using 35 Parameters

PARAMETER	% TEST	% VARIATION
	PROBLEM	COEFFICIENT
рН	0.0	11.2
Suspended solids	8.3	22.6
Dissolved solids	0.0	0.0
Electrical conductivity	t y 16.7	10.7
Dissolved oxygen	19.4	29.9
DBO ₅	0.0	8.2
Total hardness	0.0	3.2
Chlorides	5.6	13.4
Total alkalinity	100.0	4.8
Nitrate	2.8	16.8
Total phosphorus	97.2	22.4
Turbidity	27.8	22.5
Total coliforms	69.4	28.1
Fecal coliforms	38.9	31.0

Phytoplancton comunity

SITE	Phytoplankton	Dominant algal group
S1	< 200 org/mL	Diatoms
S2	< 200 org/mL	Diatoms
S 3	< 1000 org /mL	Diatoms
		Green algae
S4	< 500 org/mL	Green algae
		Diatoms
		Blue green algae
S5	< 500 org/mL	Diatoms
		Green algae
S6	< 200 org/mL	Green algae
		Diatoms
S7	< 200 org/mL	Green algae
S8	< 500 org/mL	Diatoms
S9	> 1000 org/mL	Green algae, Diatoms, Blue Green
		algae, Euglenoids

Euryonema metianicum Gomphonema affine

Amphora montana

Diatoms

Merizmopedia marzonii

Synedra amplicephala

Phacus caudatus

Aphanocapsa incerta **Euglenids and Cyanobacteria** NYGAARD INDEX

MESOTROPHIC TO EUTROPHIC

- Algal species and water quality

- Agriculture and domestic water discharge

28 Taxa

COPEPODA

ROTIFERA

CLADOCERA

OSTRACODA

MACROINVERTEBRATES

Taxonomic list

37 taxa *Melanoides* as the most abundant 87%.

Integrity Biotic Index (IBI) using fish community as indicator.

- Express the degree of change in the system due to disturbance using the fish and invertebrate community.
- It is widely used in biomonitoring systems, because is easy and the local people can do it by their self.

General trend of Integrity Biotic Index (IBI).

excellent

regular

The decision is not easy

-Sites 1 to 3 and 8 with the best quality index

-The most invertebrates diverse (potential food) sites are the poorest quality index places

Were we need to reintroduce?

Fish community aspects

Trophic aspects of the fish community in situ and ex situ

Trophic relationships between fish. Stream Teuchitlán Jalisco.

Community composition

Family	Species	Origin	Trophic guild
Cichlidae	Oreochromis spp.	Exotic	Omnivore
Goodeidae	Ameca splendens	Native	Omnivore
	Chapalichthys encaustus	Translocated	?
	Goodea atripinnis	Native	Omnivore
	Zoogoneticus purhepechus	Native	Carnivore-insect.
Poeciilidae	Pseudoxiphorus bimaculatus	Exotic	Carnivore-insect.
	Poecilia mexicana	Exotic	Carnivore-insect.
	Xiphophorus helleri	Exotic	Omnivore
	Xiphophorus maculatus	Exotic	Omnivore
Ictaluridae	Ictalurus dugesii	Native	Carnivore-insect.

Abundance of species

90% represented by exotics

Density of fish community in the different locations

■ %NATIVES ■ %EXOTICS

REPRODUCTIVE ECOLOGY

Minimum reproduction size

	ASP	GAT	HBI	PME	XHE	ZPU	ZTE
SEXUAL PROPORTION	0.25:4	1:1.3	1:2	0.68:1	1.38:1	0.75:1	1:1.8
FECUNDITY	5	8	6	20	7	6	4

FISH PARASITOLOGY IN THE WILD

Host	Parasite	Taxonomic
		group
Goodea atripinis	Contracaecum sp L2-L3*	Nematoda
	Eustrongylides sp L3*	
	Diplostomum sp Mc**	Platyhelminthes
	Centrocestus sp Mc**	Platyhelminthes
Ameca splendens	Rhabdochona sp	Nematoda
Oreochromis niloticus	Bothriocephalus acheilognathi	Platyhelminthes
Poecilia mexicana	Contracaecum sp L2-L3*	Nematoda
	Eustrongylides sp L3*	
Xiphophorus hellerii		
Zoogoneticus purhepechus	Diplostomum sp Mc**	Platyhelminthes
Heterandria bimaculata	Contracaecum sp L2-L3*	Nematoda
	Diplostomum sp Mc**	Platyhelminthes

* L = Larvae, **Mc = Metacercariae

The overall **prevalence was 25%**, an abundance of 0.8 helminths per analyzed host and an average intensity of 3 helminths per infected host. During the year the overall results about the characterization of the **infection tends to remain at low levels**; which indicates the **absence of parasitological problems** in resident fish populations.

PARASITOLOGICAL ASPECTS OF *Zoogoneticus tequila* UNDER SEMICONTROLLED CONDITIONS

In the examination period two genera of parasites were found. A crustacean ectoparasite Lernaea cyprinacea and a nematode Spiroxys sp Larva.

The prevalence infection values were 20% to 0% depending to the year season, which means, the low percentage is not a risk for the reintroduction.

SOCIAL ASPECTS

Communitarian water quality monitoring

12 people from Teuchitlan

Long term monitoring plan

Environmental education program

ENVIRONMENTAL EDUCATION WORKSHOPS

PLAYFUL ACTIVITIES

+ DYNAMICS FOR GENERATING ENVIRONMENTAL AWARENESS

+ KNOWLEDGE OF NATURAL RESOURCES

+ ACTIVITIES FOR CONSERVATION OF ENDEMIC SPECIES

LEARN IN THE GAME

- + VALUE OF BIODIVERSITY
- + CONSERVATION ACTIVITIES IN PROTECTED AREAS OF MEXICO
- + SOCIAL AND ECONOMIC VALUE OF BIODIVERSITY
- + ECOSYSTEM SERVICES
- + PRIORITY SPECIES
- + MECHANISMS FOR THE PROTECTION OF BIODIVERSITY

KNOWING THE BIOLOGICAL DIVERSITY

IMPORTANCE OF THE WATERSHED CONSERVATION

SPECIES INTERACTIONS

- + ENDEMIC SPECIES
- + INTRODUCED SPECIES
- + EXOTIC SPECIES
- + FOOD CHAIN
- + INTERSPECIFIC RELATIONSHIPS
- + REPOPULATION OF ENDEMIC SPECIES
- + VALUE BIOLOGICAL OF DIVERSITY

EVALUATION OF ENVIRONMENTAL EDUCATION PROGRAM

RESULTS

PROGRAM IMPACT % of people aware of the value of species conservation

KNOWLEDGE OF SPECIES ENDEMIC AND PUBLIC OPINION ABOUT THE REINTRODUCTION

RESULTS

PROGRAM IMPACT % surveyed people

Phase two (years two and three) Reintroducing tequila-Understanding tequila

- Continuing working in first and second year studies
- Reintroduce Z. tequila
- Evaluate *Z. tequila* reintroduction success:
 - Stomach content
 - Water quality preference
 - Competition with other fish species
 - Population dynamics
 - Reproduction ecology
 - Parasitology

9000 specimens of *Zoogoneticus tequila*

Botanical garden pond

Sexual proportion 1:1 *A. goslinae*, 1:3 *N. bilineata* 1:2 *Z. tequila*

Fish for all size

Parasitological treatment

50 pairs from Botanical garden

6 pair per five treatment with stable conditions

Antihelmintic and external parasite : Metronidazol during 48 hours + 48.

After one week

Antibiotic: Eritromicin and Tetraciclin 48 + 48 hours

Leukocytes and hemo-parasites counts

Treatment success

week

Parasites revision 100% free of parasites >50%

TREATEMENT SURVIVAL

Tetraciclina

CZT7 - 50% (0.562 g)

Eritromicina

CZT7 - 50% (0.590 g)

Metronidazol

CZT7 - 50% (0.584 g)

Mesocosm experiments...

In sites where reintroduction of *Z. tequila* can have higher potential of surviving

Environmental variables in water (e.g. pH, oxygen, temperature, dissolve solids, etc.), zooplankton, fish community (native or non native species) and phytoplankton (food for fish) are constantly monitored.

Mesocosms technic

Is a closed population...

We can evaluate:

- Ecological and biological responses of *Z. tequila*.
- The population growth rate in the "new environment"
- Local parasite susceptibility
- Reproduction and trophic ecology.

Additionally:

• Evaluate the competitive effects and responses with native and no-native species.

The repopulation of *Z. tequila* is one of many steps on this project, develop managements and conservation strategies, recover the other extinct species and control/eradicate the nonative species are just some of the goals for the near future.

The data obtain from these experiments will give us a perspective of the potential success of the reintroiduction of a native species to its original environment, and to implement long term monitoring technics available for the local people.

- Reduce the number of introduce species
- Eradicate from some places

Reintroduce 200 pairs in the main pool in 1st November

Phase three (year four) Following tequila

•Water quality parameters as explain in point 1.1

•Recollection and measurement of potential food in the water

•Stomach contents analysis on different fish species

•Fecundity index

•Parasitological analysis

•Population's trends and other biological parameters of interest (growth rate, recruitment rate, body mass, etc.)

Preparing people for the future

1 PhD Thesis

5 Msc Thesis

7 Bachelor Thesis

THANK YOU FOR THE SUPPORT

The Mohamed bin Zayed SPECIES CONSERVATION FUND

COMISIÓN NACIONAL PARA EL CONOCIMIENTO Y USO DE LA BIODIVERSIDAD

